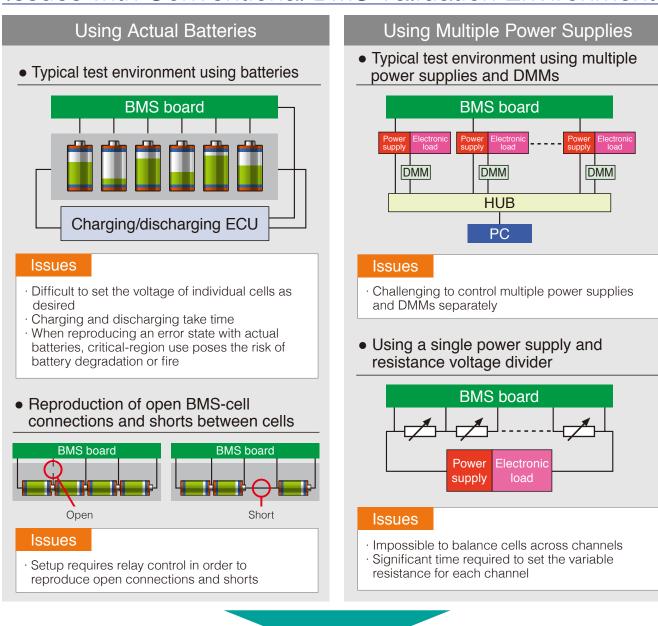
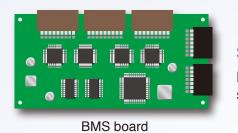

BATTERY CELL VOLTAGE GENERATOR SS7081-50



Building an environment for validating BMS^{*1} functionality has never been easier


*1 BMS: Battery Management System

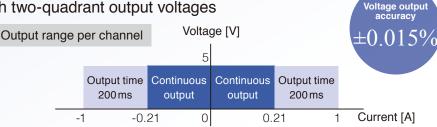
Introducing a 12-channel battery cell voltage generator that delivers power supply, electronic load, and DMM functionality in a single package. The SS7081-50's simple architecture makes building an environment for validating BMS functionality more affordable and productive than ever before.

Issues with Conventional BMS Validation Environments

Battery Cell Voltage Generator SS7081-50 resolves all of these issues

SS7081-50

Build an environment using a single instrument that simulates battery voltages for 12 cells


Easily build your own system to control the SS7081-50 on site, or use the bundled PC application.

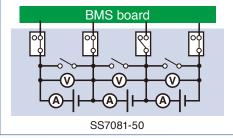
Build a highly accurate BMS validation environment easily and safely

- Safer than using actual batteries and separate power supplies
- Simulate cell behavior in individual channels, with 12 channels per SS7081-50 unit
- Build a large-scale module environment with a series voltage of 1000 V (5 V/channel × 200 channels = 1000 V)
- Simulate cell anomalies that would pose the risk of fire if using actual batteries
- Simulate open-wire malfunctions between channels and the BMS
- · Simulate cell shorts

High-accuracy, high-precision output and testing

- · Simulate cell behavior using high-accuracy voltage output
- Take advantage of cell balancing from -1 A to 1 A with two-quadrant output voltages

- Measure minuscule currents using the 100 μA range (for BMS dark current and cell balancing circuit leakage current)


Simplify evaluation with the bundled PC application

- Control up to ten SS7081-50 units
- Automate testing by creating sequences of the simulated states you wish to reproduce

42 400 077 No. 43 400 077 No. 43 500 077 No. 43 500 077 No. 43 500 077 No.	CERNAL INC CERNAL INC CERNAL INC CERNAL INC		CHORDERCHOM ENERGIACHE ENERGIACHE ENERGIACHE ENERGIACHE			AM 54 54 54 55 54 5 55 55 5 55 55 5 57 57 5 58 5	27 27	1 0-6 0-6 14 1	Setting sequence	Exit	
	CREAL SC CREAL SC CREAL SC CREAL SC CREAL SC	10/2101/2007 00/2007 00/2007 10/2007 00/2007 00/2007 10/2007 00/2007 00/2007 10/2007 00/2007 00/2007 10/2007 00/2007 00/2007 00/2007	CTHCTHR (HCTHC) II THE THK (HCTHC) II THE THK (HCTHC) II THE THK (HCTHC) III THE THK (HCTHC)						El/Sequence.csv CSV comment	ALL3.8[V]	
Measurement e Settings Seque Output OFF		Voltage Current	CH1 3.40015 V 0.00000 A	CH2 3.39950 V	CH3 CH4 3.39976 V 0.00006 A	3.39966 V			CH6 CH9 CH10 9999 V 3.40073 V 3.39992 V 3.40020 0.00006 A 0.00007 A 0.00007		×
STOP											

Open and short simulation with the SS7081-50

Voltage measurement

accuracy

 $\pm 0.01\%$

Current

measurement <u>accur</u>acy

1A range: ±0.07%

100 uA range: ±0.03

Example system architecture

System based on a HIOKI Memory HiCorder and Non-Contact CAN Sensor

Specifications (Accuracy guaranteed for 1 year, accuracy after adjustment guaranteed for 1 year)

Number of channels	12				±0.0700% of reading ±100 μA Additional error (temperature coefficient) 0°C to 18°C, 28°C to 40°C: Add the following value per 1°C:	
Maximum in-series connections		nections of instrument up to and including a series output voltage of 1000 V		1 A range		
Output range	DC voltage 0.0000 V to 5.0250 V (set independently for all channels)		Current measure- ment accuracy		±0.05% × measurement accuracy/°C ±0.0350% of reading ±10 nA	
	Maximum output current	±1.0000 A (set independently for all channels) Continuous output: -210mA to 210mA Continuous output of currents greater than		100 µA range	Additional error (temperature coefficient) 0°C to 18°C, 28°C to 40°C: Add the following value per 1°C: ±0.05% × measurement accuracy/°C	
		210mA or less than -210mA is subject to limitations*. *Continuous output limitations Max. output time: 200ms	Accuracy guarantee temperature and humidity range	23°C \pm 5°C, 80% RH (with warm-up time of at least 30 min.)		
		Time to next output (reference value): If outputting 1 A at 5 V for 200ms, 5 s	Power supply	Universal (100 V to 240 V AC)		
	DC voltage	-0.00100 V to 5.10000 V	Power supply frequency range	50 Hz / 60 Hz, ±2 Hz		
Measurement range	DC current (2-range architecture)	DC current ±1.20000 A (1 A range) ±120 0000 u A (100 u A range)		LAN Supported standard: IEEE 802.3 Transmission method: 10Base-T/100Base-TX, automatic		
Integration time	1 PLC (50 Hz: iterations (use	20ms; 60Hz: 16.7ms) × number of smoothing r-configured)		detection, full duplex Protocol: TCP/IP Connector: RJ-45 Functionality: Configuration of settings and acquisition of device status and measured values using communications commands Settings: IP address: 192.168.1.xxx (only the xxx portion is user-configured) Subnet mask: 255.255.255.0 (fixed) Default gateway: None (fixed) Communications command port: 1024 (fixed) Default setting: IP address: 192.168.1.1		
Voltage output accuracy	Additional error 0°C to 18°C, 2 ±0.05 × output	nce: $3 \text{m}\Omega$ or less (not including terminal	Interfaces			
Voltage measure- ment accuracy	Additional erro	eading ±100 μV or (temperature coefficient) 8°C to 40°C: Add the following value per 1°C:				
ment accuracy		asurement accuracy/°C	Dimensions and mass	430 (16.93 in)W ±3 mm (0.12 in) × 132 (5.20 in)H ±3 mm (0.12 in) × 483 (19.02 in)D ±3 mm (0.12 in), 10.3 kg (363.3 oz.) ±0.5 kg (17.6 oz		
		Accessories	User manual, power cord, rack frame, disk with computer application			

Model

Model: BATTERY CELL VOLTAGE GENERATOR SS7081-50

Model No. (Order Code) : SS7081-50

Please contact your HIOKI distributor for a demonstration unit and further specifications.

Note: Company names and product names appearing in this catalog are trademarks or registered trademarks of various companies.

DISTRIBUTED BY

ASM Automation Sensorik Messtechnik GmbH

Tel. +49 8123 986-0 info@asm-sensor.de www.asm-sensor.de

Am Bleichbach 18 - 24 85452 Moosinning

81 Koizumi.

HEADQUARTERS

https://www.hioki.com/

HIOKI E.E. CORPORATION

Ueda, Nagano 386-1192 Japan

All information correct as of Apr. 15, 2020. All specifications are subject to change without notice.